Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 537, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642174

RESUMO

BACKGROUND: Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS: In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS: Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION: These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Hibridização Genética , Vigor Híbrido/genética
2.
Mol Biol Rep ; 51(1): 527, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637351

RESUMO

BACKGROUND: SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS: Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS: Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION: These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.


Assuntos
Resistência à Seca , Triticum , Triticum/metabolismo , Genótipo , Melhoramento Vegetal , Pão , Proteínas de Plantas/genética
3.
Physiol Plant ; 176(1): e14183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343301

RESUMO

Roots are the main sensing organ, initiating multiple signaling pathways in response to abiotic factors, including nutrients, drought, and salt stress. A focus on improving the root system architecture is a key strategy to mitigate these stresses in wheat crop. In the present study, a diversity panel comprising indigenous landraces and historical cultivars from Pakistan was characterized for the root system architecture (RSA) and important loci were identified using a genome-wide association study (GWAS). RSA of the diversity panel was characterized 30 days after sowing in brunch tubes, and root images were taken. A high-throughput root imaging analysis using Rhizovision software was performed by setting the scale to extract the eight RSA traits and four plant biomass-related traits. GWAS identified 323 association signals for 12 root and biomass traits present on all wheat chromosomes, while the most important and reliable genetic loci (based on pleotropic loci and candidate genes) were identified on chromosomes 2A, 2B, 5A, 5D, 6A, 7B, and 7D for RSA. SNP annotation and transcriptome profiling identified nine candidate genes regulating the RSA and plant biomass traits, including ROOTLESS WITH UNDETECTABLE MERISTEM1, MYB TRANSCRIPTION FACTOR4, BRASSINOSTEROID INSENSITIVE1, SLENDER RICE1, AUXIN-RESPONSIVE FACTOR25, SCARECROW, NARROW LEAF2, PIN-FORMED1 AND PHOSPHATE TRANSCRIPTION FACTOR1. This study provided pre-breeding information for deep-rooting genotypes and associated markers that will accelerate the incorporation of such traits in breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Fenótipo , Genótipo , Polimorfismo de Nucleotídeo Único
4.
J Integr Plant Biol ; 66(3): 468-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409921

RESUMO

Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.


Assuntos
Grão Comestível , Amido , Humanos , Grão Comestível/metabolismo , Amido/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
5.
Genes (Basel) ; 15(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254975

RESUMO

The Kazakhstan-Siberia Network for Spring Wheat Improvement (KASIB) was established in 2000, forming a collaboration between breeding and research programs through biannual yield trials. A core set of 142 genotypes from 15 breeding programs was selected, genotyped for 81 DNA functional markers and phenotyped for 10 agronomic traits at three sites in Kazakhstan (Karabalyk, Shortandy and Shagalaly) and one site in Russia (Omsk) in 2020-2022. The study aim was to identify markers demonstrating significant effects on agronomic traits. The average grain yield of individual trials varied from 118 to 569 g/m2. Grain yield was positively associated with the number of days to heading, plant height, number of grains per spike and 1000-kernel weight. Eight DNA markers demonstrated significant effects. The spring-type allele of the Vrn-A1 gene accelerated heading by two days (5.6%) and was present in 80% of the germplasm. The winter allele of the Vrn-A1 gene significantly increased grain yield by 2.7%. The late allele of the earliness marker per se, TaMOT1-D1, delayed development by 1.9% and increased yield by 4.5%. Translocation of 1B.1R was present in 21.8% of the material, which resulted in a 6.2% yield advantage compared to 1B.1B germplasm and a reduction in stem rust severity from 27.6 to 6.6%. The favorable allele of TaGS-D1 increased both kernel weight and yield by 2-3%. Four markers identified in ICARDA germplasm, ISBW2-GY (Kukri_c3243_1065, 3B), ISBW3-BM (TA004946-0577, 1B), ISBW10-SM2 (BS00076246_51, 5A), ISBW11-GY (wsnp_Ex_c12812_20324622, 4A), showed an improved yield in this study of 3-4%. The study recommends simultaneous validation and use of selected markers in KASIB's network.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Sibéria , Cazaquistão , Fenótipo , Biomarcadores , Grão Comestível
6.
Sci Data ; 10(1): 884, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065977

RESUMO

Here, we performed RNA-seq based expression analysis of root and leaf tissues of a set of 24 historical spring wheat cultivars representing 110 years of temporal genetic variations. This huge 130 tissues RNAseq dataset was initially used to study expression pattern of 97 genes regulating root growth and development in wheat. Root system architecture (RSA) is an important target for breeding stress-resilient and high-yielding wheat cultivars under climatic fluctuations. However, root transcriptome analysis is usually obscured due to challenges in root research due to their below ground presence. We also validated the dataset by performing correlation analysis between expression of RSA related genes in roots and leaves with 25 root traits analyzed under varying moisture conditions and 10 yield-related traits. The Pearson's correlation coefficients between root phenotypes and expression of root-specific genes varied from -0.72 to 0.78, and strong correlations with genes such as DRO1, TaMOR, ARF4, PIN1 was observed. The presented datasets have multiple uses such as a) studying the change in expression pattern of genes during time, b) differential expression of genes in two very important tissues of wheat i.e., leaf and roots, and c) studying customized expression of genes associated with important phenotypes in diverse wheat cultivars. The initial findings presented here provided key insights into understanding the transcriptomic basis of phenotypic variability of RSA in wheat cultivars.


Assuntos
RNA-Seq , Triticum , Perfilação da Expressão Gênica , Fenótipo , Melhoramento Vegetal , Transcriptoma , Triticum/genética
7.
BMC Genomics ; 24(1): 682, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964224

RESUMO

BACKGROUND: Durum wheat is one of the most important crops, especially in the Mediterranean region. Insight into the genetic diversity of germplasm can improve the breeding program management in various traits. This study was done using single nucleotide polymorphisms (SNP) markers to characterize the genetic distinctiveness and differentiation of tetraploid wheat landraces collected from nine European and Asian countries. A sum of 23,334 polymorphic SNPs was detected in 126 tetraploid wheat landraces in relation to the reference genome. RESULTS: The number of identified SNPs was 11,613 and 11,721 in A and B genomes, respectively. The highest and lowest diversity was on 6B and 6 A chromosomes, respectively. Structure analysis classified the landraces into two distinct subpopulations (K = 2). Evaluating the principal coordinate analysis (PCoA) and weighted pair-group method using arithmetic averages (WPGMA) clustering results demonstrated that landraces (99.2%) are categorized into one of the two chief subpopulations. Therefore, the grouping pattern did not clearly show the presence of a clear pattern of relationships between genetic diversity and their geographical derivation. Part of this result could be due to the historical exchange between different germplasms. Although the result did not separate landraces based on their region of origin, the landraces collected from Iran were classified into the same group and cluster. Analysis of molecular variance (AMOVA) also confirmed the results of population structure. Finally, Durum wheat landraces in some countries, including Turkey, Russia, Ukraine, and Afghanistan, were highly diverse, while others, including Iran and China, were low-diversity. CONCLUSION: The recent study concluded that the 126 tetraploid wheat genotypes and their GBS-SNP markers are very appropriate for quantitative trait loci (QTLs) mapping and genome-wide association studies (GWAS). The core collection comprises two distinct subpopulations. Subpopulation II genotypes are the most diverse genotypes, and if they possess desired traits, they may be used in future breeding programs. The degree of diversity in the landraces of countries can provide the ground for the improvement of new cultivars with international cooperation. linkage disequilibrium (LD) hotspot distribution across the genome was investigated, which provides useful information about the genomic regions that contain intriguing genes.


Assuntos
Variação Genética , Triticum , Desequilíbrio de Ligação , Triticum/genética , Estudo de Associação Genômica Ampla , Tetraploidia , Melhoramento Vegetal , Ásia , Europa (Continente) , Polimorfismo de Nucleotídeo Único
8.
Theor Appl Genet ; 136(10): 217, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782334

RESUMO

KEY MESSAGE: Major QTL for grain zinc and iron concentrations were identified on the long arm of chromosomes 2D and 6D. Gene-based KASP markers were developed for putative candidate genes TaIPK1-2D and TaNAS10-6D. Micronutrient malnutrition is one of the most common public health problems in the world. Biofortification, the most attractive and sustainable solution to surmount malnutrition requires the development of micronutrient enriched new crop cultivars. In this study, two recombinant inbred line (RIL) populations, ZM175/XY60 and ZM175/LX987, were used to identify QTL for grain zinc concentration (GZnC), grain iron concentration (GFeC) and thousand grain weight (TGW). Eight QTL for GZnC, six QTL for GFeC and five QTL for TGW were detected. Three QTL on chromosomes 2DL and 4BS and chromosome 6A showed pleiotropic effects on all three traits. The 4BS and 6A QTL also increased plant height and might be Rht-B1a and Rht25a, respectively. The 2DL locus within a suppressed recombination region was identified in both RIL populations and the favorable allele simultaneously increasing GZnC, GFeC and TGW was contributed by XY60 and LX987. A QTL on chromosome 6DL associated only with GZnC was detected in ZM175/XY60 and was validated in JD8/AK58 RILs using kompetitive allele-specific PCR (KASP) marker K_AX-110119937. Both the 2DL and 6DL QTL were new loci for GZnC. Based on gene annotations, sequence variations and expression profiles, the phytic acid biosynthesis gene TaIPK1-2D and nicotianamine synthase gene TaNAS10-6D were predicted as candidate genes. Their gene-based KASP markers were developed and validated in a cultivar panel of 343 wheat accessions. This study investigated the genetic basis of GZnC and GFeC and provided valuable candidate genes and markers for breeding Zn- and Fe-enriched wheat.


Assuntos
Genes de Plantas , Ferro , Triticum , Zinco , Grão Comestível/química , Grão Comestível/genética , Genes de Plantas/genética , Ferro/análise , Desnutrição/dietoterapia , Micronutrientes/análise , Melhoramento Vegetal , Oligoelementos/análise , Triticum/química , Triticum/genética , Zinco/análise , Humanos
9.
J Genet Genomics ; 50(11): 872-882, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666356

RESUMO

Wheat (Triticum aestivum) is one of the most essential human energy and protein sources. However, wheat production is threatened by devastating fungal diseases such as stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst). Here, we reveal that the alternations in chloroplast lipid profiles and the accumulation of jasmonate (JA) in the necrosis region activate JA signaling and trigger the host defense. The collapse of chloroplasts in the necrosis region results in accumulations of polyunsaturated membrane lipids and the lipid-derived phytohormone JA in transgenic lines of Yr36 that encodes Wheat Kinase START 1 (WKS1), a high-temperature-dependent adult plant resistance protein. WKS1.1, a protein encoded by a full-length splicing variant of WKS1, phosphorylates and enhances the activity of keto-acyl thiolase (KAT-2B), a critical enzyme catalyzing the ß-oxidation reaction in JA biosynthesis. The premature stop mutant, kat-2b, accumulates less JA and shows defects in the host defense against Pst. Conversely, overexpression of KAT-2B results in a higher level of JA and limits the growth of Pst. Moreover, JA inhibits the growth and reduces pustule densities of Pst. This study illustrates the WKS1.1‒KAT-2B‒JA pathway for enhancing wheat defense against fungal pathogens to attenuate yield loss.


Assuntos
Basidiomycota , Triticum , Humanos , Fosforilação , Triticum/genética , Triticum/microbiologia , Necrose , Lipídeos , Basidiomycota/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
10.
Planta ; 257(6): 104, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115268

RESUMO

MAIN CONCLUSION: The study provided an insight toward better understanding of stay-green mechanisms for drought tolerance improvement and identified that synthetic-derived wheats proved as a promising germplasm for improved tolerance against water stress. Stay-green (SG) trait is considered to be related with the ability of wheat plants to maintain photosynthesis and CO2 assimilation. The present study explored the interaction of water stress with SG expression through physio-biochemical, agronomic and phenotypic responses among diverse wheat germplasm comprising of 200 synthetic hexaploids, 12 synthetic derivatives, 97 landraces and 16 conventional bread wheat varieties, for 2 years. The study established that variation of SG trait existed in the studied wheat germplasm and there was positive association between SG trait and tolerance to water stress. The relationship of SG trait with chlorophyll content (r = 0.97), ETR (r = 0.28), GNS (r = 0.44), BMP (r = 0.34) and GYP (r = 0.44) was particularly promising under water stress environment. Regarding chlorophyll fluorescence, the positive correlation of фPSII (r = 0.21), qP (r = 0.27) and ETR (r = 0.44) with grain yield per plant was noted. The improved ΦPSII and Fv/Fm of PSII photochemistry resulted in the high photosynthesis activity in SG wheat genotypes. Regarding relative water content and photochemical quenching coefficient, synthetic-derived wheats were better by maintaining 20.9, 9.8 and 16.1% more RWC and exhibiting 30.2, 13.5 and 17.9% more qP when compared with landraces, varieties and synthetic hexaploids, respectively, under water stress environment. Synthetic derived wheats also exhibited relatively more SG character with good yield and were more tolerant to water stress in terms of grain yield, grain weight per plant, better photosynthetic performance through chlorophyll fluorescence measurement, high leaf chlorophyll and proline content, and hence, may be used as novel sources for breeding drought tolerant materials. The study will further facilitate research on wheat leaf senescence and will add to better understanding of SG mechanisms for drought tolerance improvement.


Assuntos
Pão , Triticum , Triticum/fisiologia , Desidratação/metabolismo , Fluorescência , Melhoramento Vegetal , Fotossíntese , Clorofila/metabolismo , Folhas de Planta/genética , Secas
11.
Plant Biotechnol J ; 21(6): 1229-1239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794449

RESUMO

Wheat fixes CO2 by photosynthesis into kernels to nourish humankind. Improving the photosynthesis rate is a major driving force in assimilating atmospheric CO2 and guaranteeing food supply for human beings. Strategies for achieving the above goal need to be improved. Here, we report the cloning and mechanism of CO2 ASSIMILATION RATE AND KERNEL-ENHANCED 1 (CAKE1) from durum wheat (Triticum turgidum L. var. durum). The cake1 mutant displayed a lower photosynthesis rate with smaller grains. Genetic studies identified CAKE1 as HSP90.2-B, encoding cytosolic molecular chaperone folding nascent preproteins. The disturbance of HSP90.2 decreased leaf photosynthesis rate, kernel weight (KW) and yield. Nevertheless, HSP90.2 over-expression increased KW. HSP90.2 recruited and was essential for the chloroplast localization of nuclear-encoded photosynthesis units, for example PsbO. Actin microfilaments docked on the chloroplast surface interacted with HSP90.2 as a subcellular track towards chloroplasts. A natural variation in the hexaploid wheat HSP90.2-B promoter increased its transcription activity, enhanced photosynthesis rate and improved KW and yield. Our study illustrated an HSP90.2-Actin complex sorting client preproteins towards chloroplasts to promote CO2 assimilation and crop production. The beneficial haplotype of Hsp90.2 is rare in modern varieties and could be an excellent molecular switch promoting photosynthesis rate to increase yield in future elite wheat varieties.


Assuntos
Dióxido de Carbono , Triticum , Humanos , Triticum/genética , Fotossíntese/genética , Folhas de Planta , Grão Comestível
12.
Methods Mol Biol ; 2638: 221-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781645

RESUMO

PCR-based individual Single nucleotide polymorphism (SNP) genotyping methods are preferred due to their flexibility, high-throughput, and improved accuracy. Semi-thermal asymmetric reverse PCR (STARP) is one of the SNP genotyping methods developed to reduce operational cost with improved platform compatibility. STARP is a unique method which can be used either as a gel-free SNP genotyping by detection of fluorescent signals or polyacrylamide gel-based size separation. SNP assay designing using sequence information and detection methods of STARP are described in detail.


Assuntos
Técnicas de Genotipagem , Técnicas de Amplificação de Ácido Nucleico , Genótipo , Reação em Cadeia da Polimerase/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único
13.
Mol Plant ; 16(1): 279-293, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366781

RESUMO

Genomic prediction is an effective way to accelerate the rate of agronomic trait improvement in plants. Traditional methods typically use linear regression models with clear assumptions; such methods are unable to capture the complex relationships between genotypes and phenotypes. Non-linear models (e.g., deep neural networks) have been proposed as a superior alternative to linear models because they can capture complex non-additive effects. Here we introduce a deep learning (DL) method, deep neural network genomic prediction (DNNGP), for integration of multi-omics data in plants. We trained DNNGP on four datasets and compared its performance with methods built with five classic models: genomic best linear unbiased prediction (GBLUP); two methods based on a machine learning (ML) framework, light gradient boosting machine (LightGBM) and support vector regression (SVR); and two methods based on a DL framework, deep learning genomic selection (DeepGS) and deep learning genome-wide association study (DLGWAS). DNNGP is novel in five ways. First, it can be applied to a variety of omics data to predict phenotypes. Second, the multilayered hierarchical structure of DNNGP dynamically learns features from raw data, avoiding overfitting and improving the convergence rate using a batch normalization layer and early stopping and rectified linear activation (rectified linear unit) functions. Third, when small datasets were used, DNNGP produced results that are competitive with results from the other five methods, showing greater prediction accuracy than the other methods when large-scale breeding data were used. Fourth, the computation time required by DNNGP was comparable with that of commonly used methods, up to 10 times faster than DeepGS. Fifth, hyperparameters can easily be batch tuned on a local machine. Compared with GBLUP, LightGBM, SVR, DeepGS and DLGWAS, DNNGP is superior to these existing widely used genomic selection (GS) methods. Moreover, DNNGP can generate robust assessments from diverse datasets, including omics data, and quickly incorporate complex and large datasets into usable models, making it a promising and practical approach for straightforward integration into existing GS platforms.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Melhoramento Vegetal , Redes Neurais de Computação , Genômica
14.
BMC Plant Biol ; 22(1): 590, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526965

RESUMO

We evaluated root system architecture (RSA) of a set of 58 historical spring wheat cultivars from Pakistan representing 105 years of selection breeding. The evaluations were carried out under control and water-limited conditions using a high-throughput phenotyping system coupled with RhizoVision Explorer software. The cultivars were classified into three groups based on release year as cultivars released pre-1965, released between 1965 and 2000, and cultivars released post-2000. Under water-limited conditions a decline in 20 out of 25 RSA component traits was observed in pre-1965 cultivars group. Whereas cultivars released after the 1965, so-called green revolution period, showed a decline in 17 traits with significant increments in root length, depth, and steep angle frequency which are important root traits for resource-uptake under water-limited conditions. Similarly, cultivars released after 2000 indicated an increase in the number of roots, depth, diameter, surface area, and steep angle frequency. The coefficient of correlation analysis showed a positive correlation between root depth and yield-related traits under water-limited conditions. We also investigated the effects of green-revolution genes (Rht1) and some phenology-related genes such as DRO1, TaMOR, TaLTPs, TaSus-2B on RSA and identified significant associations of these genes with important root traits. There was strong selection pressure on DRO1 gene in cultivated wheat indicating the allele fixed in modern wheat cultivars is different from landraces. The expression of DRO1, and TaMOR were retrieved from an RNAseq experiment, and results were validated using qRT-PCR. The highest expression of DRO1 and TaMOR was found in Chakwal-50, a rainfed cultivar released in 2008, and MaxiPak-65 released in 1965. We conclude that there is a positive historic change in RSA after 1965 that might be attributed to genetic factors associated with favored RSA traits. Furthermore, we suggest root depth and steep angle as promising traits to withstand water-limited environments and may have implications in selection for breeding.


Assuntos
Raízes de Plantas , Triticum , Triticum/genética , Alelos , Raízes de Plantas/genética , Melhoramento Vegetal , Água
15.
Front Plant Sci ; 13: 982844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275557

RESUMO

Crop wild resources are excellent sources of new genetic variation for resilience against climate extremes. However, detailed characterization of the desirable phenotypes is essential before using these crop wild resources in breeding programs. This current study was, therefore, conducted to investigate the water stress responses of eight wild Elymus species and two wheat cultivars. The experiment was carried out under varying levels of osmotic stress induced by polyethylene glycol and progressive water stress through different field capacities. Water stress significantly reduced both physiological and biochemical traits compared to control, ranging from 7.1% (protein content) to 34.5% (chlorophyll) under moderate stress and 9.1-45.8% under severe stress. The anatomical features were also affected under progressive water stress, including a reduction in xylem vessel diameter (7.92 and 16.50%), phloem length (4.36 and 7.18%), vascular bundle length (3.09 and 6.04%), and ground tissue thickness (2.36 and 5.52%), respectively. Conclusively, Elymus borianus (endemic to Swat, Pakistan), E. russelli, E. caninus, E. longioristatus, and E. dauhuricus outperformed the check wheat cultivar, Pirsabak 2005, which is a rainfed variety. The results revealed that Elymus species belonging to the tertiary gene pool of bread wheat could be an excellent drought tolerance source for use in a breeding program.

16.
Plants (Basel) ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079617

RESUMO

Root hairs play an important role in absorbing water and nutrients in crop plants. Here we optimized high-throughput root hair length (RHL) and root hair density (RHD) phenotyping in wheat using a portable Dinolite™ microscope. A collection of 24 century wide spring wheat cultivars released between 1911 and 2016 were phenotyped for RHL and RHD. The results revealed significant variations for both traits with five and six-fold variation for RHL and RHD, respectively. RHL ranged from 1.01 mm to 1.77 mm with an average of 1.39 mm, and RHD ranged from 17.08 mm-2 to 20.8 mm-2 with an average of 19.6 mm-2. Agronomic and physiological traits collected from five different environments and their best linear unbiased predictions (BLUPs) were correlated with RHL and RHD, and results revealed that relative-water contents (RWC), biomass and grain per spike (GpS) were positively correlated with RHL in both water-limited and well-watered conditions. While RHD was negatively correlated with grain yield (GY) in four environments and their BLUPs. Both RHL and RHD had positive correlation indicating the possibility of simultaneous selection of both phenotypes during wheat breeding. The expression pattern of TaRSL4 gene involved in regulation of root hair length was determined in all 24 wheat cultivars based on RNA-seq data, which indicated the differentially higher expression of the A- and D- homeologues of the gene in roots, while B-homeologue was consistently expressed in both leaf and roots. The results were validated by qRT-PCR and the expression of TaRSL4 was consistently high in rainfed cultivars such as Chakwal-50, Rawal-87, and Margallah-99. Overall, the new phenotyping method for RHL and RHD along with correlations with morphological and physiological traits in spring wheat cultivars improved our understanding for selection of these phenotypes in wheat breeding.

17.
Front Plant Sci ; 13: 972481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092407

RESUMO

Increasing global temperature has adverse effects on crop health and productivity at both seedling and reproductivity stages. It is paramount to develop heat tolerant wheat cultivars able to sustain under high and fluctuating temperature conditions. An experiment was conducted to characterize 194 historical wheat cultivars of Pakistan under high temperature at seedling stage to identify loci associated with heat tolerance using genome-wide association studies (GWAS). A quantitative trait locus, TaHST1, on chr4A was also characterized to identify the haplotypes at this locus associated with heat tolerance in wheat from Pakistan. Initially, the diversity panel was planted under control conditions (25°C/20°C day and night temperature) in a glass house. At three leaf stage, plants were subjected to heat stress (HS) by increasing temperature (40°C/35°C day and night), while one treatment was kept at control condition. After 7 days of HS, data were collected for seedling morphology. Heat stress reduced these traits by 25% (root weight) to 40% (shoot weight), and shoot biomass was largely affected by heat stress. A GWAS model, fixed and random model circulating probability unification (FarmCPU), identified 43 quantitative trait nucleotides (QTNs) on all chromosomes, except chr7B, were associated under both HS and control conditions. Thirteen QTNs were identified in control, while 30 QTNs were identified in HS condition. In total, 24 haplotypes were identified at TaHST1 locus, and most of the heat tolerant genotypes were assigned to Hap-20 and Hap-21. Eleven QTNs were identified within 0.3-3.1 Mb proximity of heat shock protein (HSP). Conclusively, this study provided a detailed genetic framework of heat tolerance in wheat at the seedling stage and identify potential genetic regions associated with heat tolerance which can be used for marker assisted selection (MAS) in breeding for heat stress tolerance.

18.
Theor Appl Genet ; 135(9): 2925-2941, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915266

RESUMO

KEY MESSAGE: A genetic framework underpinning salinity tolerance at reproductive stage was revealed by genome-wide SNP markers and major adaptability genes in synthetic-derived wheats, and trait-associated loci were used to predict phenotypes. Using wild relatives of crops to identify genes related to improved productivity and resilience to climate extremes is a prioritized area of crop genetic improvement. High salinity is a widespread crop production constraint, and development of salt-tolerant cultivars is a sustainable solution. We evaluated a panel of 294 wheat accessions comprising synthetic-derived wheat lines (SYN-DERs) and modern bread wheat advanced lines under control and high salinity conditions at two locations. The GWAS analysis revealed a quantitative genetic framework of more than 200 loci with minor effect underlying salinity tolerance at reproductive stage. The significant trait-associated SNPs were used to predict phenotypes using a GBLUP model, and the prediction accuracy (r2) ranged between 0.57 and 0.74. The r2 values for flag leaf weight, days to flowering, biomass, and number of spikes per plant were all above 0.70, validating the phenotypic effects of the loci discovered in this study. Furthermore, the germplasm sets were compared to identify selection sweeps associated with salt tolerance loci in SYN-DERs. Six loci associated with salinity tolerance were found to be differentially selected in the SYN-DERs (12.4 Mb on chromosome (chr)1B, 7.1 Mb on chr2A, 11.2 Mb on chr2D, 200 Mb on chr3D, 600 Mb on chr6B, and 700.9 Mb on chr7B). A total of 228 reported markers and genes, including 17 well-characterized genes, were uncovered using GWAS and EigenGWAS. A linkage disequilibrium (LD) block on chr5A, including the Vrn-A1 gene at 575 Mb and its homeologs on chr5D, were strongly associated with multiple yield-related traits and flowering time under salinity stress conditions. The diversity panel was screened with more than 68 kompetitive allele-specific PCR (KASP) markers of functional genes in wheat, and the pleiotropic effects of superior alleles of Rht-1, TaGASR-A1, and TaCwi-A1 were revealed under salinity stress. To effectively utilize the extensive genetic information obtained from the GWAS analysis, a genetic interaction network was constructed to reveal correlations among the investigated traits. The genetic network data combined with GWAS, selective sweeps, and the functional gene survey provided a quantitative genetic framework for identifying differentially retained loci associated with salinity tolerance in wheat.


Assuntos
Tolerância ao Sal , Triticum , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal/genética , Triticum/genética
19.
Front Plant Sci ; 13: 877496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903232

RESUMO

Synthetic hexaploid wheats and their derived advanced lines were subject to empirical selection in developing genetically superior cultivars. To investigate genetic diversity, patterns of nucleotide diversity, population structure, and selection signatures during wheat breeding, we tested 422 wheat accessions, including 145 synthetic-derived wheats, 128 spring wheat cultivars, and 149 advanced breeding lines from Pakistan. A total of 18,589 high-quality GBS-SNPs were identified that were distributed across the A (40%), B (49%), and D (11%) genomes. Values of population diversity parameters were estimated across chromosomes and genomes. Genome-wide average values of genetic diversity and polymorphic information content were estimated to be 0.30 and 0.25, respectively. Neighbor-joining (NJ) tree, principal component analysis (PCA), and kinship analyses revealed that synthetic-derived wheats and advanced breeding lines were genetically diverse. The 422 accessions were not separated into distinct groups by NJ analysis and confirmed using the PCA. This conclusion was validated with both relative kinship and Rogers' genetic distance analyses. EigenGWAS analysis revealed that 32 unique genome regions had undergone selection. We found that 50% of the selected regions were located in the B-genome, 29% in the D-genome, and 21% in the A-genome. Previously known functional genes or QTL were found within the selection regions associated with phenology-related traits such as vernalization, adaptability, disease resistance, and yield-related traits. The selection signatures identified in the present investigation will be useful for understanding the targets of modern wheat breeding in Pakistan.

20.
Biotechnol Adv ; 60: 108006, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732256

RESUMO

Common wheat is a major source of nutrition around the globe, but unlike maize and rice hybrids, no breakthrough has been made to enhance wheat yield since Green Revolution. With the availability of reference genome sequence of wheat and advancement of allied genomics technologies, understanding of genes involved in grain yield components and disease resistance/susceptibility has opened new avenues for crop improvement. Wheat has a huge hexaploidy genome of approximately 17 GB with 85% repetition, and it is a daunting task to induce any mutation across three homeologues that can be helpful for the enhancement of agronomic traits. The CRISPR-Cas9 system provides a promising platform for genome editing in a site-specific manner. In wheat, CRISPR-Cas9 is being used in the improvement of yield, grain quality, biofortification, resistance against diseases, and tolerance against abiotic factors. The promising outcomes of the CRISPR-based multiplexing approach circumvent the constraint of targeting merely one gene at a time. Deployment of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 endonuclease (CRISPR-Cas9) and Cas9 variant systems such as cytidine base editing, adenosine base editing, and prime editing in wheat has been used to induce point mutations more precisely. Scientists have acquired major events such as induction of male sterility, fertility restoration, and alteration of seed dormancy through Cas9 in wheat that can facilitate breeding programs for elite variety development. Furthermore, a recent discovery in tissue culturing enables scientists to significantly enhance regeneration efficiency in wheat by transforming the GRF4-GIF1 cassette. Rapid generation advancement by speed breeding technology provides the opportunity for the generation advancement of the desired plants to segregate out unwanted transgenes and allows rapid integration of gene-edited wheat into the breeding pipeline. The combination of these novel technologies addresses some of the most important limiting factors for sustainable and climate-smart wheat that should lead to the second "Green Revolution" for global food security.


Assuntos
Sistemas CRISPR-Cas , Triticum , Adenosina , Sistemas CRISPR-Cas/genética , Citidina , Grão Comestível/genética , Endonucleases/genética , Genoma de Planta/genética , Melhoramento Vegetal , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...